A Biologically Plausible Computational Model for Auditory Object Recognition. Authors and affiliation
نویسندگان
چکیده
Object recognition is a task of fundamental importance for sensory systems. Although this problem has been intensively investigated in the visual system, relatively little is known about the recognition of complex auditory objects. Recent work has shown that spike trains from individual sensory neurons can be used to discriminate between and recognize stimuli. Multiple groups have developed spike similarity or dissimilarity metrics to quantify the differences between spike trains. Using a nearest neighbor approach the spike similarity metrics can be used to classify the stimuli into groups used to evoke the spike trains. The nearest prototype spike train to the tested spike train can then be used to identify the stimulus. However, how biological circuits might perform such computations remains unclear. Elucidating this question would facilitate the experimental search for such circuits in biological systems, as well as the design of artificial circuits that can perform such computations. Here we present a biologically plausible model for discrimination inspired by a spike distance metric using a network of integrate-and-fire model neurons coupled to a decision network. We then apply this model to the birdsong system in the context of song discrimination and recognition. We show that the model circuit is effective at recognizing individual songs, based on experimental input data from field L, the avian primary auditory cortex analog. We also compare the performance and robustness of this model to two alternative models of song discrimination: a model based on coincidence detection and a model based on firing rate.
منابع مشابه
A biologically plausible computational model for auditory object recognition.
Object recognition is a task of fundamental importance for sensory systems. Although this problem has been intensively investigated in the visual system, relatively little is known about the recognition of complex auditory objects. Recent work has shown that spike trains from individual sensory neurons can be used to discriminate between and recognize stimuli. Multiple groups have developed spi...
متن کاملA robust and biologically plausible spike pattern recognition network.
The neural mechanisms that enable recognition of spiking patterns in the brain are currently unknown. This is especially relevant in sensory systems, in which the brain has to detect such patterns and recognize relevant stimuli by processing peripheral inputs; in particular, it is unclear how sensory systems can recognize time-varying stimuli by processing spiking activity. Because auditory sti...
متن کاملA Neural Model of Object Naming
One astonishing capability of humans is to recognize thousands of different objects visually, and to learn the semantic association between those objects and words referring to them. This work is an attempt to build a computational model of such capacity, simulating the process by which infants learn how to recognize objects and words through exposure to visual stimuli and vocal sounds. One of ...
متن کاملBiologically inspired methods in speech recognition and synthesis: closing the loop
Current state-of-the-art approaches to computational speech recognition and synthesis are based on statistical analyses of extremely large data sets. It is currently unknown how these methods relate to the methods that the human brain uses to perceive and produce speech. In this thesis, I present a conceptual model, Sermo, which describes some of the computations that the human brain uses to pe...
متن کاملView-Tolerant Face Recognition and Hebbian Learning Imply Mirror-Symmetric Neural Tuning to Head Orientation
The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and robust against identity-preserving transformations, like depth rotations [1, 2]. Current computational models of object recognition, including recent deep-learning networks, generate these properties through a hierarchy o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008